
NervoAPI Documentation
HACS Core — External Integration Interface (Docs Version)

1. Introduction
NervoAPI is the official interface for connecting external systems to HACS
Core.
It enables applications, bots, robots, services, and user devices to interact with
Core instances, trigger cognitive workflows, retrieve semantic output, and con-
trol autonomous processes.

NervoAPI provides: - secure communication, - stateful context management, -
isolated Core clones per user, - high‑level cognitive operations, - real-time event
streaming.

This document defines the API structure, authentication flow, endpoints, and
best practices.

2. Core Concepts
2.1 Core Instance

Every user or integrated device may have a dedicated Core clone, which
maintains: - personal memory, - internal state, - process history, - autonomous
background tasks.

2.2 Stateless Fabric vs Stateful Core

NervoAPI interacts only with the Core, not with underlying LLMs.
This ensures: - deterministic memory, - traceable logic, - semantic continuity, -
isolation between users.

2.3 Semantic Tasks

Each NervoAPI call triggers a task inside the Core: - message processing, - fi-
nancial operation, - generation request, - strategy pipeline, - background process
activation.

2.4 Event Stream

Core can push: - system events, - background process outputs, - autonomous
insights, - task completions.

through WebSocket channels.

1



3. Authentication
3.1 API Keys

Each Core instance uses a secure access token:

Format:

hacs_live_<random_32_chars>

API keys must be stored encrypted.

3.2 Semantic Key (Optional)

For sensitive actions (finances, memory editing, device control), Core may re-
quire: - user-defined phrase, - video identity check, - biometric pattern.

Semantic Key never leaves the encrypted enclave.

4. Base URL
https://api.hacs.world/nervo

All endpoints are prefixed with:

/v1

5. Endpoints

5.1 Send Message to Core
POST /v1/core/message

Send user input to the Core.

Request

{
"core_id": "core_123",
"message": "Create a 3-step marketing plan",
"meta": {

"source": "telegram_bot"
}

}

2



Response

{
"ok": true,
"core_id": "core_123",
"reply": "Here is a 3-step plan...",
"task_id": "task_9fd8ab",
"state": {

"semantic_weight": 0.82,
"intent": "marketing.plan"

}
}

5.2 Fetch Core State
GET /v1/core/state/{core_id}

Response

{
"ok": true,
"core_id": "core_123",
"active_processes": 5,
"memory_usage": {

"l0": 128,
"l1": 412,
"l2": 34

},
"last_update": "2025-12-03T11:32:00Z"

}

5.3 Trigger Background Process
POST /v1/core/process/run

Request

{
"core_id": "core_123",
"process": "build_strategy",
"params": {

"focus": "Japan market"
}

}

3



Response

{
"ok": true,
"process_id": "proc_88a3bc"

}

5.4 Get Event Stream
WebSocket /v1/core/stream/{core_id}

Events may include:

{
"event": "background.completed",
"process_id": "proc_88a3bc",
"payload": {

"summary": "Strategy draft ready."
}

}

5.5 Memory Access (Safe Mode)
GET /v1/core/memory/recent/{core_id}

Returns safe semantic memory items, excluding private zones.

{
"items": [

{
"zone": "brand",
"value": "...text..."

}
]

}

5.6 Execute Tool / Integration
POST /v1/core/tool

{
"core_id": "core_123",
"tool": "gpay.transfer",
"params": {

4



"amount": 100,
"currency": "USDT",
"to": "wallet_x"

}
}

Response:

{
"ok": true,
"status": "pending_confirmation"

}

If sensitive → Core will request Semantic Key.

5.7 Clone Core Instance
POST /v1/core/clone

{
"source_id": "core_123",
"new_owner": "user_884",
"options": {

"include_memory": false
}

}

Response:

{
"ok": true,
"new_core_id": "core_884"

}

6. Rate Limits
Default: - 60 requests / minute
- WS soft limit: 5 concurrent channels

Enterprise licenses may increase these.

7. Response Codes
• 200 — success

5



• 400 — malformed request

• 401 — invalid token

• 403 — forbidden (Semantic Key required)

• 429 — rate limit

• 500 — internal Core error (experimental behavior)

8. Best Practices
• Always check semantic_weight.

• Avoid sending noisy/ambiguous messages.

• Use background processes for long-running tasks.

• Handle WebSocket events for autonomous insights.

• Store API keys encrypted.

• Never expose Semantic Key externally.

9. Deprecation Policy
NervoAPI follows a rolling 12‑month stability window:

• Deprecated endpoints remain operational for 12 months.

• Changes are announced via /docs/changelog.

10. Contact
API support and enterprise integration:
api@hacs.world

6


	NervoAPI Documentation
	HACS Core — External Integration Interface (Docs Version)
	1. Introduction
	2. Core Concepts
	2.1 Core Instance
	2.2 Stateless Fabric vs Stateful Core
	2.3 Semantic Tasks
	2.4 Event Stream

	3. Authentication
	3.1 API Keys
	3.2 Semantic Key (Optional)

	4. Base URL
	5. Endpoints
	5.1 Send Message to Core
	POST /v1/core/message

	5.2 Fetch Core State
	GET /v1/core/state/{core_id}

	5.3 Trigger Background Process
	POST /v1/core/process/run

	5.4 Get Event Stream
	WebSocket /v1/core/stream/{core_id}

	5.5 Memory Access (Safe Mode)
	GET /v1/core/memory/recent/{core_id}

	5.6 Execute Tool / Integration
	POST /v1/core/tool

	5.7 Clone Core Instance
	POST /v1/core/clone

	6. Rate Limits
	7. Response Codes
	8. Best Practices
	9. Deprecation Policy
	10. Contact


